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Threshold Detection in Narrowband Non-Gaussian Noise

Kenneth S. Vstola

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

The Middleton Class A narrowband non-Gaussian noise model

[9-12] is examined. It is shown that this noise model (which

is known to fit closely a variety of non-Gaussian noises) can

itself be closely approximated by a computationally much

simpler noise model. It is then shown by numerical examples

that, for the problem of locally optimum detection, the sim-

plest form of this approximation yields nearly optimal

(asymptotic) performance. The performance of other simple

* suboptimal threshold detectors in Class A noise is also exam-

i ined. Finally, a useful relationship between the Class A model

and the c-mixture model is developed.
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L Introduction

For many communication problems the usual Gaussian noise assump-

tion is inadequate. Often this is due to the occurrence of low probability,

high amplitude "spikes". This impulsive component of the interference

has been found to be significant in many problems. Examples include

* atmospheric noise, where lightning discharges in the vicinity of the

receiver can cause such spikes 11-3,13-17), and underwater problems

such as sonar and submarine communication. where the ambient acousti-

cal noises may include impulses due to noisy aquatic animals much as

* snapping shrimp [4] or impulses due to ice cracking in arctic regions [5].

In addition to these natural non-Gaussian noise sources, there is a great

variety of man-made non-Gaussian noise sources such as automobile igni--

tions, neon lights, and other electronic devices [6-li].

Various attempts have been made to develop models of non-Gaussian

noises. These models can be divided into two groups: those which are

empirically motivated and those which are physically motivated. Empiri-

cal models (13,14,18-28] are those developed to fit collected data, often

with little regard for the underlying physical mechanisms. Physical

models (7-12,15-17]. on the other hand, attempt to model these mechan-

Isms directly.

Among the physical models of non-Gaussian noise some of the most

general are those developed by Middleton [7-12]. Middleton divides non-

Gaussian noise Into two classes, A and B. (There has also been considera-

Lion of a Class C which contains noises which are sums of Class A and

Claws B components [9).) Class B noises are broadband, L~e. those with
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spectra broader than the passband of the receiver. Class A noises are

narrowband, i.e. have spectra comparable to or narrower than the

receiver passband.

In this paper we examine the Middleton Class A noise model. We show

that, in a wide variety of cases, the first-order noise probability density

function (PDF) can be closely approximated by PDF's having considerably

simpler form. We then consider the locally optimum (also called thres-

hold or weak signal) detection problem in Class A noise. We show that the

detector which is locally optimum for the above PDF approximation per-

forms very well for the original Class A model. We also examine the per-

formance of other even simpler suboptimum threshold detectors.

Finally, in Section V, a relationship is developed between the Class A noise

model and the c-mixture model. The e-mixture model is a highly tract-

able empirical model, and through this relationship the advantages of the

(physical) Class A model can be carried over to the mixture model, e.g.,

physical motivation and direct calculation of basic parameters.

!7

.°*1
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Il. The am A Noise Model

Middleton [7-12] assumes the noise has the form X(t) + N(t) where

N(t) is a Gaussian background component and

X(t) = EUJ.G) (1)!j

where U denotes the jh received waveform from an interference source

and I is a random parameter. He then assumes that the waveform

receptions are Poisson distributed in time and shows that the normalized

(to unit variance) noise density j (z) can be approximated canonically by

f (x) =,f (z;an) (2)
m-O(

where j (z ;og) is the zero-mean Gaussian PDF with variance o2. The vari-

ance 4n of the mO density is given by

/ = A + r (3)
1+"

and the coefficient A,, is given by

- (4)
M!

where A and F' are the two basic parameters of the model. The first

parameter. A, is called the "overlap index" and is defined by A = vT

where v is the rate of the homogeneous Poisson process which governs

the generation of the interfering waveforms [j and T is the mean dura-

tion of a typical interfering signaL The other parameter, r, is given by
the ratio of the power in the Gaussian portion of the interference to the

power in the Poisson component. The corresponding envelope dlstribu-

-
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tion is given by

P(E>Eo)- (5)

for EO'O. Middleton has shown that, by adjusting the parameters A and

P, the density f given in (2) can be made to fit a great variety of non-

Gaussian noise densities [9-12]. Also, the parameters A and r" are physi-

cally motivated and can be directly estimated (see 112,9]).

Unfortunately the model (2) is cumbersome. For example, in [11],

Spaulding and Middleton exhibit the optimal nonlinearity for detection

(i.e. the likelihood ratio f (z-sl)/f (z-so)) and point out that this detec-

tor structure is likely to be computationally burdensome and unecononi-

cal. Thus we would like to develop detector nonlinearities having simpler

structure but which retain the desirable properties of the one given in

[11).

:1

. .-.--.-- - - - L' - -- I J. . . .. }



-5-

m. Appro-im a the Cla. A Model

For each M2!1 we define the PDF f to be the (normalized) M-term

truncation of the Class A noise PDF given in (2), i.e.

M-I

fjj(z) = -o(8)

Since the Km's are positive and t Y, = 1, we have that f (given in
m0

(6)) converges pointwise to f (given in (2)) as M-*o-. (In fact, it converges

uniformly.) Our goal in this section is to show that f y is actually a very

good appromimation to f for small values of M. Note that fM is a

weighted sum of a finite number of Gaussian densities, a model of this

form was used to model non-Gaussian noise in [22], [27] and [28].

That the Class A noise PDF given in (2) is a good model for nar-

rowband non-Gaussian noise has been demonstrated [9-12] by showing

that (for appropriate choice of parameters A and r) the envelope distri-

bution (5) closely fits the measured envelope distribution of various

Class-A-type noises (e.g. interference from powerlines or machinery). In

Figures 1-4 we have plotted the M-term (normalized) truncation of the

envelope distribution (5) for M=1,2,3,... We see that, in each case, only

two or three terms are necessary in order for the truncated envelope dis-

tribution be indistinguishable from the true one. (We note that a similar

observation has been made by Berry [34] concerning the instantaneous

power density.) The parameters (A=0.35, I'=0.0005) for Figure I are

used by Middleton [9-12] to fit "interference (probably) from nearby

- ".
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powerline, produced by some kind of equipment fed by line" [9]. Figure

2's parameters (A=0.0001, r=50) fit data from ore-crushing machinery

[9-12]. The parameters of Figure 3 (A =0.1, P=o.ooi) and of Figure 4

(A=0.1, Ir=0.1) are from a range of typical values [9-12).

Figures 1-4 give rise to the hope that a detector designed to be

optimal assuming the noise PDF is fg (with M small) would perform well

when the actual PDF of the noise is f. We consider here the case of

'locally optimum" detection (i.e. small signal, large time-bandwidth pro-

duct). The details of locally optimum detection have been presented in

many places [30-33,11]. We will only state the needed results.

Under mild regularity conditions the (asymptotic) performance (or

processing gain) achievable using a given detector nonlinearity g(z) when

the i.i.d. noise has PDF h.(z) is given by the efficacy functional

2

g (z)w ' (z)dz

-(g~h) (7)L gl(z)h(z)dz

For a given noise PDF h(z) the locally optimum detector nonlinearity

gO(z) is the solution to

,O(h) = max n(g ,a)

and is given by

-k(z)8"g (z) = h (x)()

If we let t=f in (8) we obtain the locally optimum detector nonlinearity

______MEN_
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gj(z) for fu* Since f is symmetric, g;() is antisymmetrlc (ie.

gj(-z)=-(z)). In Figures 5-8, gj(z) is plotted for the examples of Fig-

ures 1-4, respectively, for z>O and M=2,3,4.... (for M=1, g;(:) is a

straight line with slope 1/ 0e =(+r)/r). We see that in each case g2 (z)

closely approximates the locally optimum nonlinearity for f.

Returning to the general case, we have that for any PDF h(z) the per-

formance of its locally optimum nonlinearity 9O(z) is given by

7(h) = 7(g *,h) = ()dz. (9)

7*(h) is also known as Fisher's Information for h. An interesting (and

well known) fact about the function 17 *(h) is that it is minimized by the

Gaussian PDF. In fact, the locally optimum detector nonlinearity for

Gaussian noise is the linear detector (g (z)=z/o 2) which has performance

equal to unity for all noise PDF's.

Since the Class A noise PDF f in (2) is highly non-Gaussian we will

often have i (f)>>1. We have seen that for very small values of M. fI

*, and gj(z) closely approximate f and its locally optimum nonlinearity

* ~g,(z). So there is reason to believe that q(g ,f) should be close to

v0(J). Table I bears this out. For each of the examples which we have

been considering (which cover a fairly wide range of realistic values of the

parameters) we see that the processing gain achievable using gu is

.. extremely close to that achievable using gf



~-8-

M. Other Simple Suboptimum Nonlinearities

In Section III we plotted locally optimum (and suboptimum) detector

nonlinearities for the Class A model using logarithmic scales. In Figure 9

the locally optimum nonlinearity for the example used in Figures I and 5

(A=0.35, r=O.O005) is replotted using linear scales. The vertical dashed

lines at x = 0.06 and = = 0.10 divide the z-axis into three regions

S, = fix1:0.061, S2 = 1O.06<Izl[10.1O1, and S 3 = 1lZ >0.10 which are

the regions where g;(z) is approximately linear (S,), returning to zero

(S 2 ), and approximately zero (S 3). Evaluating the probability under f of

each of these regions (or, more intuitively the fraction of the data we

should expect to fall in each region) we have that

Pr(S1) u 0.71, Pr (S2 ) F 0.01, and Pr(S3 ) P 0.28. Thus we see that all but

about 17 of the time the data will fall in the approximately linear region

or the approximately zero region. This leads us to believe that g; can be

closely approximated by a blanker gi (also called a hole puncher) which

is shown in Figure 1Oa. For comparison we have also examined the per-

formance of a soft limiter giL (or clipper) and a hard limiter g&L (or sign

detector) which are shown in Figures 1Ob and lOc, respectively.

In Table 2 we have given the processing gain achievable using the

locally optimum nonlinearity gf, the blanker ga, the soft limiter gA, and

the hard limiter gmL (Note that the stars on go and g" indicate that the

optimal value of c is used). We have included each of the examples given

earlier as well as two others. In each case we see that the blanker is

nearly optimal while the soft limiter and the hard limiter have substan-

tially less than optimal performance. The one exception to this is the last



example (A= :1.0, l'=o. ) where the soft limiter is nearly optimal and even

the hard limiter out performs the blanker. Not surprisingly the locally

optimum nonlinearity for this case (shown in Figure 11) is more closely

approximated by a soft limiter than a blanker. We must stress though

that, based on our experience, this seems to be an unusual case. In fact

Table 2 is quite representative of our findings in general.

Another issue of importance when considering various detector non-

linearities is that of robustness or sensitivity. Since the blanker and soft

limiter each only depend on one parameter (the "cut-off" parameter c), it

is fairly straightforward to examine their robustness. (Note that a hard

limiter does not depend on such a parameter.) i Figure 12 we plotted

the processing gain achievable using gi and gh versus the cut-off param-

eter c for the example (A=0O.35, '=0.0005) considered in Figures 1, 5, and

9. It would seem from the smoothness and flatness of the curves in Fig-

ure 12 near their respective maxima that both the soft limiter and the

blanker are quite insensitive to variations in the cut-off parameter.

On the other hand, in Figure 13, the same two curves are plotted

using a different scale on the abscissa. This new scale is not the cut-off

parameter c but the probability of the set I -c --z -c Iunder the Class A

PDF f (x). As mentioned above, this can be thought of as the fraction of

the data which we can expect to fall in the linear region of the detector

nonlinearity (cf. S, in the first paragraph of this section). Since any esti-

mate of c 0, the optimal value of the cut-off parameter, would presumably

come from some version of an empirical PDF (see [ 12]), Figure 13 is likely

to be a more reasonable way than Figure 12 to examine the sensitivity of



the blanker and soft limiter to uncertainties in estimating Ce. Results

similar to Figure 13 have also been obtained for the Middleton Class B

(broadband) noise model by Ingram and Houle [35].

It is not unreasonable at first thought to assume that this change in

scale would cause little change in the relative smoothness and flatness of

the two curves. In fact Figure 13 shows quite strikingly that the blanker

is very sensitive while the soft limiter is very insensitive near their

respective maxima. This example is again quite representative of a wide

variety of other cases.
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II

V. The V -Mixture Model

In this section we consider the relationship between the r-mixture

model (defined below) and Middleton's Class A model. In the Introduction

we mentioned two broad classes of models for non-Gaussian noise: physi-

cal models (such as the Middleton models) and empirical models. One

commonly used empirical model is the c-mixture (or c-contaminated)

model in which the first-order noise PDF has the form

f (Z) = (I-Ocfo() + cf i(Z) (10)

where e€[0,1] and fo and f I are PDF's. The PDF fo is usually taken to be

a Gaussian PDF representing background (i.e. nonimnpulsive) noise such

as receiver front-end noise. Among the choices for the "contaminating"

PDF f1 are various "heavy-tailed" densities such as the Laplacian or dou-

ble exponential ['8,19]. Others have chosen f I to be also Gaussian with

variance C7, taken to be many times the variance of f , al,. The ratio

-? = al/ al. has generally been taken to be between 1 and 100 [20-26].

As with other empirical models the disadvantage of the mixture model is

that the parameters (c and 9) are not directly related to the underlying

physical situation and hence are difficult to determine. The primary

advantage of the mxture model is its analytic simplicity.

We saw in Section III that for a wide range of values of the parame-

ters, A and r". of Middleton's Class A noise model the (normalized) sum of

the first two terms of the first-order noise PDF give a sufficiently accu-

rate approximation to the full PDF given in (2). In these cases f g is just

a "Gaussian-Gaussian" mixture as in (10) with fo(z)=f (z;c4),

L - w_-1- - - --... .. . . -
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f I(z)=! (Z=l)
72= -1 - - (11)

Ar

and

C K,__ A (12)
70- KI + A

Thus we see that. when a Gaussian-Gaussian mixture is used to model

narrowband non-Gaussian noise, it may be possible to obtain e and 72

from (II), (12) and the techniques already developed for determining A

and I- [12,9].

Another interesting consequence of the relations (11) and (12) is that

(at least, for Class-A-type noises) reasonable values for -? seem to be

between 100 and 10. For example, if A=0.I and r"=0.001 as in Figures 3

and 7 then -?=10.001, and if A=0.35 and r"=0.0005 as in Figures 1 and 5

then -?=5715. These values are as much as two orders of magnitude

greater than those previously used for [2 [20-26]. On the other hand the

commonly used values of c. say between 0.01 and 0.25, correspond

approximately to values of A between 0.01 and 1/3.

L -i
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VI. Summary and Conluson

In this paper we have shown that the Middleton Class A noise model

can often be approximated closely by the (normalized) sum of just the

rst few terms. In fact, in many cases, two terms are sufficient This was

especially clear when we lookerd at the efficacy of the detector nonlinear-

ity which is locally optimum for two terms of the Class A model and found

it comparable to the efficacy of the full locally optimum detector (see

Table 1).

We have also examined the performance of some simple suboptimum

detector nonlinearities. For most Class A noises the blanker has nearly

optimal performance while the soft limiter and hard limiter have

significantly lower performance. On the other hand the performance of

the blanker seems to be far more sensitive to errors in estimating the

f optimal cut-off parameter.

ji Finally, for those cases where two terms of the Class A model are

enough we have developed a relationship between the Class A model and

. the i-mixture model. This yields a way of estimating the parameters of

the mixture model directly from the physically motivated parameters of

the Class A model.

It should also be noted that one of the clear advantages of the Mid-

-* dleton Class A noise model is that, since its parameters can be estimated

directly from the data, any detector based on this model could easily be

implemented adaptively. Such a situation would require real-time com-

putation of the detector nonlinearity. Here the above approximation

would result in substantial computational savings. Furthermore, in such

It I I - . .
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a situation it would be possible to determine M (the truncation parame-

ter) in an adaptive fashion as well. That is, first determine A arnd r and

then choose the number of terms necessary to achieve the desired

degree of approximation. In fact, this approach (of determining Mi adap-

I tively) could actually be used to obtain optimal (not just nearly optimal)

* 1 performance in some situations. Optimal performance could be achieved

using the philosophy of the Schwartz detector (see [29] for details).

Finally we note that, while we have carried out our analysis only for

the problem of locally optimum detection, the closeness of the envelope

distribution approximations (Figures 5-8) encourages us to believe that

similar computational savings might be realized by applying the approach

of this paper to other non-Gaussian signal processing problems. Further-

more, we re-emphasize that, while our results have primarily been

demonstrated by some examples, these examples cover a wide range of

realistic values for the parameters of the model.
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Figure 1. Truncated envelope distribution for Y.1.2.3....
(A=.35,r=.ooo5).



(Ot 0. 1)

*1.
A

Ilk

dB above rms value

flgure 2. Truncated envelope distribution for M=1.2.3....
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Figure 5. Locally optimum detector nonlinearity for noise

PDF fN M=2.3.4,.. (Am 35.rN.0005).
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Figure 10a. The blanker (hole puncher).

Figure I Ob. The soft limiter (clipper).

* I Figure 10c. The bard limiter (sign detector).
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Figure 12. Mflacy (processing g&Wn Of soft limiter 9L and blankr #I

(A0.5 -- =0.0005).
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Figure 13. Effiacy (processing gain) of soft Limiter yiL and blankoer gj

(A=0.35, r=0.0005). Abscissa scale different from Fig. 12.



ML A=Q-350=0.35.r 0.0=0.0000 1.=50 A=0.1.1"=0.001 A=0.1.]'=0.1
| 1.000 1.00 1.000O 1.000

2 1339.894 1.02 892578 9,1901

_A- 1340.001 1.02 892580 9.1903
14 1 1340.002 1 1.02 892.580 9. 1903

Table 1. q i . f ). Processing gain (efficacy) achievable using nonlinearity gq
in Class A noise. (g4,) = L*(f) in all four examples.

0.' .35,.0005Q 0.0001.50 0.1.0.001 0.1.0.1 1.0.0o.0001 1.0. 0.1
• 1340 1.02 892.6 9.2 3299 2.39

a 1325 1.02 890.2 9.0 3221 1.69

a , 730 1.02 685.1 7.8 918 2.20
Dow* 639 0.65 518.7 5.9 889 1.22

* Table 2. Processing gain (efficacy) achievable using optimal (g 0). blanker (g).
soft limiter (g;L. and hard limiter (gtl) nonlinearities.
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